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Abstract
Entropy minimization (EM) is frequently used
to increase the accuracy of classification models
when they’re faced with new data at test time.
EM is a self-supervised learning method that opti-
mizes classifiers to assign even higher probabili-
ties to their top predicted classes. In this paper, we
analyze why EM works when adapting a model
for a few steps and why it eventually fails after
adapting for many steps. We show that, at first,
EM causes the model to embed test images close
to training images, thereby increasing model accu-
racy. After many steps of optimization, EM makes
the model embed test images far away from the
embeddings of training images, which results in
a degradation of accuracy. Building upon our
insights, we present a method for solving a practi-
cal problem: estimating a model’s accuracy on a
given arbitrary dataset without having access to its
labels. Our method estimates accuracy by looking
at how the embeddings of input images change
as the model is optimized to minimize entropy.
Experiments on 23 challenging datasets show that
our method sets the SoTA with a mean absolute
error of 5.75%, an improvement of 29.62% over
the previous SoTA on this task.

1. Introduction
Practitioners commonly employ model adaptation strategies
to enhance classifier performance on real-world data, which
often differs significantly from training data. Unsupervised
losses play a crucial role in adapting models to images
corrupted by noise, such as snow or motion blur, or images
from domains not seen in training, such as paintings or
computer rendered images. Entropy minimization (EM) is a
Test Time Adaptation (TTA) method that can improve the
accuracy of a model on new datasets, without the need for
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additional labeled training data. EM adapts classifiers by
iteratively increasing the probabilities assigned to the most
likely classes while diminishing those of the others, and is
an integral part of many recent TTA methods (Wang et al.,
2020; Mummadi et al., 2021; Rusak et al., 2022b; Goyal
et al., 2022; Niu et al., 2022; Cho et al., 2023; Niu et al.,
2023; Press et al., 2023; Döbler et al., 2024; Marsden et al.,
2024). In this paper, we analyze EM to understand how it
works, when and why it fails, and how to use it to predict
model accuracy.

The initial intuition behind using entropy minimization,
given by Wang et al. (2020) was based on the observation
that models tend to be more accurate on images for which
they make predictions with higher confidence. The logi-
cal extension of this observation was to encourage models
to bolster their confidence on such images. However, our
analysis reveals this intuition to be only partly true. Remark-
ably, even when we construct datasets by excluding samples
initially classified correctly — effectively creating datasets
with a 100% classification error rate at the start — entropy
minimization performance remains largely intact.

Our analysis uncovers that during entropy minimization,
embeddings of images from the input dataset tend to form
distinct clusters. The distances between samples within each
cluster diminish, creating more defined groupings, while
the centers of these clusters gradually move apart, a phe-
nomenon akin to neural collapse (Papyan et al., 2020; Han
et al., 2021; Ben-Shaul et al., 2023). At first, embeddings
of the input images not only cluster, but also stay close to
the embeddings of original training images. Only after nu-
merous optimization steps do these embeddings begin to
diverge, distancing themselves from the embeddings of the
clean training data (Fig. 1). We show this divergence to be
intricately tied to a reduction in the model’s accuracy.

Drawing from our insights, we present a method designed to
estimate the accuracy of a given model on any dataset, with-
out labels. This task is notably difficult, because in some
cases in-distribution accuracy is tied to out-of-distribution
(OOD) accuracy (Miller et al., 2021), while in other cases it
is not (Teney et al., 2022). Our approach, termed Weighted
Flips (WF), works in conjunction with TTA methods as they
adapt to input data, with minimal added overhead. Using
approximations of cluster consistency, WF estimates the ac-
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Figure 1. Understanding the successes and failures of EM through clustering embedding dynamics. After a few iterations of
adaptation (left), EM improves the accuracy of pretrained classifiers by embedding the input test data near mean embeddings of classes
from the training data, marked by stars. Eventually, after many iterations (right), EM fails, because it embeds input test data far from
where training data is embedded. We show the t-SNE embeddings of 16-class-Imagenet (Geirhos et al., 2018), throughout adaptation to
Gaussian Noise 3 (Hendrycks & Dietterich, 2019).

curacy of the network by measuring how the predictions of a
fixed set of images change: the more they change, the lower
the consistency of the clusters and the lower the predicted
accuracy. We validate the efficacy of our method across an
extensive array of 23 ImageNet-scale (Deng et al., 2009)
datasets, encompassing diverse challenges, such as random
adversarial noises, hard images, and datasets featuring OOD
classes. WF surpasses the prior state-of-the-art methods by
a substantial margin of 29.62%, setting a new benchmark in
the accuracy estimation domain.

2. The Mystery of Entropy Minimization
EM has been validated as effective in semi-supervised
settings, with pioneering work by (Grandvalet & Ben-
gio, 2004) and subsequent advancements, such as Tent
(Wang et al., 2020), which demonstrated EM’s ability to
enhance the accuracy of pre-trained classifiers on unlabeled
ImageNet-scale (Deng et al., 2009) datasets. EM operates
by iteratively optimizing the model to minimize the en-
tropy of the output classification probabilities, denoted by
H(ŷ) = −

∑
c p(ŷc) log p(ŷc), where ŷ is the logits vector

and p(ŷc) is the probability assigned to class c. This ap-
proach inherently boosts the likelihood of the most probable
classes while diminishing that of the others. Wang et al.
(2020) observed a correlation between lower output entropy
and accuracy, indicating that images with low entropy out-
puts are more likely to be classified correctly. Subsequent
studies, including (Niu et al., 2022; Press et al., 2023; Mars-
den et al., 2024), have built on this foundation, assigning
more weight to lower-entropy samples, and even ignoring
high-entropy samples entirely.

To assess the influence of correctly classified images on
EM’s effectiveness, we tested the effects of omitting im-
ages that were initially correctly classified by the model. If
such images are pivotal in EM’s ability to enhance classi-
fier performance, we expect a notable decline in the EM
efficacy.

For this purpose, we utilized ImageNet-C (Hendrycks &
Dietterich, 2019) Gaussian Noise level 3, dividing it into
training and holdout sets. The training set was replicated
seven times, systematically omitting images for which the
ground truth label lay somewhere in the pre-trained model’s
top-k predictions, for (k ∈ [1, 2, 3, 5, 10, 20, 50]). Con-
cretely, for k = 1, all accurately classified images were
excluded, and for k = 2, images whose label ranked within
the top two predictions were removed, and so forth. Each
altered training set was used to adapt a Tented model. The
model’s accuracy was then evaluated on the holdout set,
with evaluations every ten iterations, spanning a total of
1,000 iterations.

The experiment results (see Figure 2) are revealing, under-
scoring the robustness of EM. Notably, EM’s effectiveness
endures even when images initially classified correctly are
excluded.

For instance, removing all initially correctly classified im-
ages before adaptation produces an increase in accuracy
comparable to not removing any images, with gains of
10.50% and 12.38%, respectively. Even more remarkable
is the persistence of this trend: with k = 10, the model still
registers a notable accuracy improvement of 7.88%. This
observation is particularly striking given the nature of the
excluded images – they are not just numerous, but also rep-
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Figure 2. EM remains effective even when initially correctly
classified images are excluded. Accuracy gain per iteration on
a holdout set, as Tent adapts to its inputs. Surprisingly, the per-
formance gain on the holdout set is high, even when we exclude
top-k samples from the training set. When top-k = 0, no images
are excluded.

resent the highest quality, being those the network is most
certain about. Specifically, images excluded at k = 1, which
constitute 45% of the dataset, have an average entropy of
1.85, markedly lower than the original dataset’s average
entropy of 2.84.

Additionally, we also tested the effects of removing images
according on their initial entropy level, and found similar
results (see Appendix G). These findings intriguingly sug-
gest that the model’s accuracy and entropy on individual
images may not be as pivotal to EM’s success in enhancing
classifier performance as previously thought. It reveals a
nuanced dimension of EM’s functionality and hints at the
presence of deeper mechanisms, which we will investigate
next.

3. Phases of Entropy Minimization: Clustering
Dynamics and Embedding Alignment

We analyze the evolution of input data embeddings as EM
progresses through its iterations. At first, EM causes the
model to increase in accuracy, which we refer to as the first
phase, followed by a decrease in accuracy, which we refer
to as the second phase. The number of EM iterations needed
for the model to reach its maximum accuracy (the end of
the first phase, and the beginning of the second) is varied
and depends on the input data.

In the first phase, these embeddings align closely with the
embeddings of samples from the original training distribu-
tion. However, in the second phase, this alignment starts to
deteriorate; the embeddings drift progressively further from
the training distribution, disrupting the initial alignment, as
conceptually depicted in Figure 3.

Figure 3. The two-phase clustring paradigm explains EM be-
havior. Intuitive visualization of EM’s phases. In the first phase
(success), input test data becomes more clustered, aligning closely
with the mean embeddings of corresponding classes from the train-
ing data (the colored stars). In the second phase (failure), these
clusters diverge from the mean embeddings.

To examine the clustering process across the two phases of
the EM, we focus on two measures: (1) the quality of the
clusters and (2) their alignment with the original training
data distribution. For evaluating cluster quality, we ran
k-means on the embeddings and computed the Silhouette
score (Rousseeuw, 1987), a widely recognized metric for
measuring cluster quality. The Silhouette score gauges how
closely an embedding corresponds to its own cluster in
contrast to neighboring clusters, with a high score indicating
distinct and well-separated clusters.

To quantify the alignment between clusters and embeddings
of the original training distribution, we looked at mean
embeddings for the classes in the ImageNet validation set,
alongside the centroids of clusters found by k-means. We
use the Hungarian method (Kuhn, 1955) to find a matching
between mean class embeddings and centroids, which mini-
mizes the average distance between each assigned pair of
(class embedding, centroid). Henceforth, we refer to this
average of distances as “Shift distance”.

As ImageNet contains many similar fine-grained classes, we
restrict our analyses to the 16 classes outlined in (Geirhos
et al., 2018), which represent approximately 20% of the total
images. Consequently, we use k = 16 when we cluster the
embeddings using k-means. This focused approach allowed
for a detailed and controlled examination of clustering be-
haviors within the framework of EM.

We now examine changes in the Silhouette score and Shift
distance as Tent adapts to the input data, over 50,000 it-
erations using a ResNet-50 (He et al., 2016). Figure 4
showcases the comparative Silhouette scores and Shift dis-
tances for both phases, incorporating findings from three
diverse datasets: IN-C (Hendrycks & Dietterich, 2019), IN-
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Figure 4. Two-phase behavior during the EM adaption predicts accuracy. Differences in Silhouette score, Shift distance, and accuracy
for Tent adaptation. Each point corresponds to a test dataset; each dataset appears twice: once in blue, corresponding to phase 1 (success,
∆ Acc ≥ 0), and once in orange, corresponding to phase 2 (failure, ∆ Acc < 0). Left: In both phases, and across almost all datasets, the
Silhouette score of embeddings increases, corresponding to a better-clustered embedding space. Right: In the first phase, input data
embeddings are kept close to training image embeddings, while in the second phase, they drift away, exhibiting large Shift distance
changes. The datasets used are IN-C, IN-C and IN-3DCC.

C (Mintun et al., 2021), and IN-3DCC (Kar et al., 2022).

Our findings distill into two primary insights: First, a pos-
itive change in Silhouette score, indicative of enhanced
clustering, is observed in both phases for more than 98%
of cases. Notably, during the initial phase, a positive cor-
relation exists between changes in Silhouette score and ac-
curacy (ρ = 0.70, significant at α = 0.05). Second, Shift
distances minimally change (and sometimes diminish, sig-
nifying closer proximity to training data embeddings) in the
first phase, they notably grow larger in the second phase.
During this latter phase, a substantial negative correlation
emerges between changes in Shift distance and accuracy
(ρ = −0.79, significant at α = 0.05).

Synthesizing these results reveals a nuanced picture: EM
bolsters accuracy by clustering the embedded data into more
concentrated clusters. This strategy remains efficacious as
long as these embeddings align closely with the embeddings
of the training data. However, as input data embeddings
diverge from the training distribution, the classifier’s ac-
curacy diminishes. This intricate interplay offers a deeper
understanding of EM’s operation and its dependency on
the spatial dynamics of data embeddings. We discuss the
connection between EM and clustering in more detail in
Appendix A.

4. Estimating Dataset Accuracy
Leveraging our understanding of EM, we tackle a critical
challenge in TTA settings: estimating the accuracy of a
classification model on a given dataset. Ideally, one might

resort to the metrics used in this paper, namely Silhouette
score or Shift distance, for this purpose. However, these
metrics encounter practical hurdles: the Silhouette score
depends on clustering, which varies across datasets due
to differences in class distributions or the total number of
classes, and calculating the Shift distance is impossible,
as accessing the training data (in order to calculate mean
embedding vectors per class) is forbidden in most TTA
settings (Wang et al., 2020; Niu et al., 2022; Yuan et al.,
2023).

4.1. Label Flipping

Due to the difficulties of measuring these scores in prac-
tice, we take a different approach. We look at the number
of images for which the model’s prediction changes some-
where between the initial and the final iteration of the EM
(“label flips”). According to our hypothesis, the number
of label flips is correlated with the pre-trained model’s ac-
curacy on the dataset. Our reasoning is as follows: there
exists a tight correlation between accuracy and Silhouette
score at iteration 0 — the higher the accuracy, the better
clustered the input data, shown in Figure 5. Therefore, we
do not expect EM, which works by clustering its inputs, to
significantly change an already well-clustered set of embed-
dings. It follows that there will likely be only a few label
flips. Conversely, given a dataset with a low accuracy, its
image embeddings will likely be badly clustered initially,
which leads EM to change them significantly, resulting in
many label flips.

We demonstrate the validity of this reasoning by adapt-
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Figure 5. Label flips are strongly correlated with Silhouette
score. Silhouette score at the initial iteration and the total number
of label flips at the final iteration are correlated for datasets in IN-C,
IN-C, and IN-3DCC. Both metrics are correlated with accuracy,
but measuring label flips is easier and more practical.

ing the state-of-the-art TTA method, Rdumb (Press et al.,
2023), to IN-C, IN-C, and IN-3DCC. Initially, we used the
pre-trained model to classify 1,000 input images and then
recorded the total number of label flips after adaptation. The
model is adapted for 1,000 iterations because Rdumb resets
itself every 1,000 iterations. We find a strong correlation
between accuracy and label flips, seen in Figure 5.

4.2. Weighted Flips

We now describe the Weighted Flips (WF) method of con-
verting the count of label flips into a dataset accuracy es-
timate. Instead of just counting the number of flips, we
additionally consider the classifier’s initial confidence in
its predictions for each image; images initially classified
with high confidence that later flip should contribute more
significantly than those with lower initial confidence. We
then compute the WF as:

WF =
∑
i

1{flip}(i) · ci

where 1flip(i) is 1 if image i’s label flipped and 0 otherwise,
and ci is the confidence percentile of image i. Utilizing pairs
of weighted flips and accuracy ((WF, accuracy)k) from IN-
Validation and ImageNet-C holdout noises, we interpolate
the weighted-flips-to-accuracy function, f (refer to Figure
6). To estimate the accuracy of a model on an unfamiliar
dataset, we adapt the model to it using RDumb (for details,
see Appendix J), measuring flips on the first 1,000 input

images. After adaptation, we count and weigh the flips,
estimating the model’s accuracy as f(WF). Importantly,
WF is versatile and can work with a range of TTA methods
(see Appendix E), and f can be interpolated in a variety
of different ways (see Appendix B). In Appendix D.1, D.2,
we present ablation studies on the effects of varying end
iterations and holdout set sizes on performance.

4.3. Experimental Setting

Accuracy estimation methods must yield robust estimates
across diverse and challenging datasets to be considered
reliable. In our evaluation, we probe the effectiveness of our
proposed method using an extensive selection of popular
ImageNet-scale classification datasets. This includes all
classification datasets from the Shift-Happens benchmark1.
Our chosen datasets encompass a wide spectrum, from
various types of noise (IN-C, IN-C, IN-3DCC, CCC) and
domain shifts (IN-R, IN-V2, IN-D), to adversarial noises
(Patch-IN, BG Challenge, IN-Obfuscations), and even im-
ages featuring classes not present in ImageNet (NINCO).

Several datasets provide multiple splits of a similar nature,
the results of which we average, except for ImageNet-D
(Rusak et al., 2022a), which encompasses a variety of dis-
tinct domains. The CCC dataset (Press et al., 2023) is par-
ticularly expansive, containing 27 splits with 7.5M images
each; for practicality, we only include the initial 25k images
from each split in our analysis. Altogether, our evaluation
spans 326 individual dataset splits.

We briefly describe the other methods tested alongside ours:

• AC (Hendrycks & Gimpel, 2016): Computes the
dataset-wide average confidence for the top-predicted
class in each image.

• DoC (Guillory et al., 2021): Builds upon AC by as-
sessing the variance in mean confidence between the
validation and OOD sets, demonstrating consistent en-
hancements in performance.

• ATC (Garg et al., 2022): Estimates accuracy by deter-
mining the fraction of unlabeled data samples where
the model’s confidence exceeds a learned threshold.

• COT (Lu et al., 2023): Estimates accuracy by applying
Optimal Transport to quantify the disparity between
OOD and in-distribution model outputs.

4.4. Results

Looking at Table 1 reveals that our WF method consistently
stands out as the best estimator across a broad spectrum

1https://github.com/
shift-happens-benchmark/icml-2022
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Figure 6. Fitting and accuracy prediction using the WF method. Left: Fitting f : using the noises in IN-C Holdout and ImageNet-
Validation, we fit pairs of (weighted flips, accuracy), shown in red. The black curve shows the function resulting from interpolating the
points, f(x) = 0.00036x2 − 0.32x+ 75.66. Right: With our weighted-flips-to-accuracy function f , we can estimate the accuracy of a
model across the six splits from (Rusak et al., 2022a). We use the same f function and show that it works across different architectures,
without refitting.

of ImageNet-scale datasets. WF sets a new benchmark by
achieving an average estimation error of just 5.75%, signifi-
cantly outperforming the nearest competitor, COT, reducing
the relative error by 29.62%. This exemplary performance
of WF is not limited to average cases; even in the most
challenging scenarios of worst-case performance, WF main-
tains its superiority, cutting the error by 29.74% compared
to COT. Furthermore, WF demonstrates remarkable consis-
tency as an estimator. In 18 of the 23 datasets evaluated, it
either leads the pack or comes a close second. This is in
stark contrast to the performance of COT, which, despite
being second-best, only achieves top-two rankings in 12
datasets. The persistent effectiveness of WF across diverse
conditions underscores its reliability and superiority in ac-
curacy estimation.

Practicality of WF: Beyond its top-tier performance, WF
stands out for its practicality. It operates concurrently with
the EM process, requiring only three parameters that define
the weighted-flips-to-accuracy function, f . This process
adds minimal computational overhead, requiring only 20
additional forward passes for every 1,000 Rdumb iteration
steps. Lastly, WF is effective even when only a small num-
ber of samples are available, see Appendix C.

Versatility across Models and Architectures: To demon-
strate the adaptability of the WF method, we tested it
across various models and architectures, employing the
same weighted-flips-to-accuracy function, f , used in our
primary experiments (Table 1). Testing encompassed dif-
ferent ResNet variants, including models enhanced with

noise augmentation techniques, such as ANT (Rusak et al.,
2020), AugMix (Hendrycks et al., 2019), and DeepAugment
(Hendrycks et al., 2021a). Additionally, we evaluated a
ResNext-101 (Xie et al., 2017), ViTB-16 (Dosovitskiy et al.,
2010), and MaxViT-T (Tu et al., 2022). The mean absolute
errors between estimated and actual accuracies are reported
in Table 2. Remarkably, 5 of the 8 models tested achieved a
lower mean absolute error than the baseline model, RN-50,
showing that f maintains its efficacy across different model
architectures. When f is refitted on the architecture that WF
is evaluated on, performance improves (see Appendix F).

Figure 7. WF outperforms other methods across almost all sub-
set sizes. Mean Absolute Error of WF when using a weighted-flips-
to-accuracy function f to fit on random subsets of the 23 datasets
in Table 1. For each point on the x-axis, we sample 50 fitting
datasets for WF, and plot the average and the standard deviation of
the MAE. For the other methods, we plot average MAE across all
datasets

.
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Table 1. Mean Absolute Error between estimated accuracy, and true accuracy on a ResNet-50 model, for 4 estimation methods (AC,
DoC, ATC, COT) (Hendrycks & Gimpel, 2016; Guillory et al., 2021; Garg et al., 2022; Lu et al., 2023), and ours. Our method (WF)
is consistently either best or second best, with the best average and worst-case performance across many different OOD datasets. Best
results are in bold; second best are underlined, {.} indicates how many splits are in each dataset, when there are more than 1.

Datasets AC DoC ATC COT WF (ours)
Noises

IN-C {75} (Hendrycks & Dietterich, 2019) 10.06 6.61 7.44 2.23 4.79
IN-C {50} (Mintun et al., 2021) 19.48 15.96 12.16 3.17 7.35
IN-3DCC {60} (Kar et al., 2022) 11.83 3.44 8.15 3.02 3.66

CCC {27} (Press et al., 2023) 15.51 11.95 6.05 2.04 2.80
Domain Shifts

Stylized (Geirhos et al., 2019) 31.63 28.08 7.36 12.18 3.81
IN-V2 {3} (Recht et al., 2019) 5.58 2.41 0.45 2.68 4.70
IN-Sketch (Wang et al., 2019) 22.34 18.78 0.15 4.23 1.71
IN-R (Hendrycks et al., 2021a) 23.21 19.65 0.37 2.44 1.88

IN-D (Rusak et al., 2022a)
Real 10.56 7.00 1.35 27.54 3.18

Painting 17.40 13.85 3.27 7.49 2.12
Clipart 21.27 17.72 1.62 4.52 3.37
Sketch 24.43 20.87 0.61 0.71 5.44

Infograph 54.12 50.57 36.26 3.44 3.63
Quickdraw 32.67 29.11 4.13 1.60 2.57

Cartoon & Drawing {2} (Salvador & Oberman, 2022) 15.69 12.13 4.42 1.62 13.25
Adversarial Noises

BG Challenge {8} (Xiao et al., 2020) 10.54 7.37 4.88 19.68 6.92
IN-A (Hendrycks et al., 2021b) 45.12 41.57 20.51 30.38 21.61

IN-C Patch {75} (Gu et al., 2022) 4.37 0.16 4.42 2.57 1.60
IN-Hard (Taesiri et al., 2023) 29.71 26.15 6.73 15.33 3.64

Patch-IN {10} (Pintor et al., 2023) 8.06 5.11 5.11 10.13 8.87
IN-Obfuscations {3} (Stimberg et al., 2023) 99.90 96.34 99.90 0.12 4.58

OOD/Other
ObjectNet (Barbu et al., 2019) 34.59 31.03 9.43 10.40 2.74

NINCO (Bitterwolf et al., 2023) 50.29 46.74 26.97 20.28 18.07

Average 26.02 22.29 11.81 8.17 5.75
Worst Case 99.90 96.34 99.90 30.38 21.61

Average (Worst Case Excluded) 22.66 18.92 7.81 7.16 5.03

Robustness to Dataset Choice: In Table 1, we derived the
weighted-flips-to-accuracy function f using IN-C holdout
and ImageNet validation noises. We further validated the
robustness of the WF method by fitting f using a subset of
the 23 datasets and then assessing its performance on the
remaining datasets. As an added challenge, we excluded
datasets used in the original configuration: IN-C Holdout
and ImageNet-Validation. For each subset size, we repeated
the fitting and evaluation process 50 times. The results, plot-
ted in Figure 7, illustrate that the WF method consistently
outperforms COT across almost all subset sizes, reinforc-
ing its resilience and reliability across a broad spectrum of
datasets.

5. Related Work
To the best of our knowledge, the first time EM was shown
to be useful for improving a classifier’s accuracy was in
(Grandvalet & Bengio, 2004). They showed how EM can
be applied to a logistic regressor, and found it to be ben-
eficial in cases where the data was corrupted by outliers.
Following this, Lee et al. (2013) proposed pseudo labeling
as a means of improving classification accuracy on MNIST.
Interestingly, t-SNE is used to show that pseudo labeling
works partly by encouraging the model’s embeddings to be
better clustered, and away from the decision boundaries of
the model. Moreoever, it is stated that pseudo labeling is
equivalent to entropy regularization (Grandvalet & Bengio,
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Table 2. Mean Absolute Error between estimated accuracy and true accuracy, across different architectures. Using the same weighted-flips
to-accuracy function, f , works across different architectures and models, without need for finetuning. For each model and dataset, the
task is to estimate the accuracy of that model on the dataset. Best results are in bold; second best are underlined. AugMix: ♢ ANT: ‡
DeepAugment: ♠ (Hendrycks et al., 2019; Rusak et al., 2020; Hendrycks et al., 2021a)

Datasets RN-50

RN-18

RN-34

RN-50
‡

RN-50
♢

RN-50
♢♠

RNXt-1
01

RNXt-1
01
♠

ViT-
B/16

M
ax

ViT-
T

IN-C 4.79 7.21 6.04 5.39 5.02 4.81 5.35 4.12 8.34 6.73
IN-C 7.35 7.90 6.77 6.84 6.60 6.48 5.60 5.63 6.59 4.97

IN-3DCC 3.66 3.58 3.89 3.20 3.07 2.98 7.23 4.37 7.19 6.79
IN-V2 4.70 4.11 3.37 3.67 5.06 5.00 6.47 5.54 4.44 6.08

IN-D
Real 3.18 2.83 0.38 2.72 6.59 3.30 4.24 0.61 1.02 3.40

Painting 2.12 5.36 0.78 0.59 7.62 2.51 12.02 1.12 3.02 0.60
Clipart 3.37 1.59 4.42 0.32 6.19 2.19 7.24 0.53 12.82 4.52
Sketch 5.44 1.53 3.93 6.18 9.73 3.60 10.75 1.89 11.04 10.88

Infograph 3.63 1.76 3.67 3.74 6.78 0.28 6.37 2.34 9.27 9.13
Quickdraw 2.57 2.34 2.24 2.20 2.53 1.27 2.27 1.21 2.36 2.31

Average 4.08 3.82 3.55 3.49 5.92 3.10 6.76 2.74 6.61 5.54

2004). Although this might be true in the settings consid-
ered then, pseudo labeling was shown to be less effective
(and thus not equivalent) on larger-scale datasets, by Tent.
Unlike previous work, we demonstrate that EM clusters by
measuring the Silhouette score of the clusters themselves,
allowing us to empirically evaluate ImageNet scale datasets.
Additionally, we show what happens when EM fails, which
is not discussed in prior work, with the exception of (Oliver
et al., 2018), which shows how EM fails to adapt to a toy
“two moons” dataset, because the model increases the mag-
nitude of its output logits. This isn’t the case in most TTA
settings, as the final layer of the model isn’t trained.

Minimizing entropy at test time was popularized by Tent
(Wang et al., 2020), which demonstrated the effectiveness
of EM on large-scale datasets, such as ImageNet-C.

Entropy minimization is ideal for domain adaptation: it can
be used on a trained model, without retraining, and doesn’t
require balancing a proxy loss with a classification loss, as
in (Gidaris et al., 2018; Sun et al., 2020; Gandelsman et al.,
2022).

Though many prior works use losses that are based on en-
tropy (Wang et al., 2020; Rusak et al., 2022b; Goyal et al.,
2022; Mummadi et al., 2021; Wang et al., 2022; Niu et al.,
2022; Cho et al., 2023; Press et al., 2023; Niu et al., 2023;
Döbler et al., 2024; Marsden et al., 2024), little is known as
to why it works. Additionally, entropy minimization, when
used in TTA settings, is effective for only a limited num-
ber of iterations, before the classifier degrades to chance
accuracy, shown in (Press et al., 2023). Interestingly, this

degradation of accuracy, named “collapse”, differs from
classical definitions of catastrophic forgetting in continual
learning (De Lange et al., 2021), in that the task itself does
not change.

A plethora of methods have been used for adapting a trained
classifier to out-of-domain data: from using an auxiliary
loss to help learn the test domain (Sun et al., 2019; 2020;
Gandelsman et al., 2022) through simply re-estimating the
mean and variance statistics (Schneider et al., 2020; Nado
et al., 2020) to using image augmentations (Wang et al.,
2022; Song et al., 2023; Chakrabarty et al., 2023). However,
for their simplicity and success, entropy minimization-based
methods are still the most widely used and successful in
settings most relevant to this work.

Works that follow Tent improve EM by modifying the loss
to be more robust to label noise (Rusak et al., 2022b) or
smoother (Mummadi et al., 2021), or by adjusting the tem-
perature of the output distribution (Goyal et al., 2022).
While testing on long sequences of images, both (Wang
et al., 2022) and (Niu et al., 2022) show that Tent degrades
in accuracy, the more iterations it does. (Press et al., 2023)
show that this is in fact true for all TTA methods apart from
EATA (Niu et al., 2022), which uses an L2 regularizer to con-
strain the adapting model’s weights to be close to those of
the pretrained model. (Niu et al., 2023) study the effects of
batch size, label shifts and other factors on adaptation; they
propose a method to stabilize adaptation. Similarly, (Döbler
et al., 2024) also test entropy minimization-based methods
in real-world conditions, and propose a new method based
on a diversity and a weighted entropy loss. Entropy has
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also been used in semi-supervised settings: (Sohn et al.,
2020) propose augmentation and an entropy loss to train a
classifier when only a few labels are available.

Analyzing which labels flip during training has been studied
in (Toneva et al., 2018), which explored which samples are
forgotten during training. Another work, (Deng et al., 2022)
looked at how to reduce the amount of times a label flips dur-
ing training. The agreement/disagreement between different
models on ID data was shown to be linearly correlated to
OOD accuracy and has been recently used to estimate accu-
racy in (Miller et al., 2021; Jiang et al., 2021; Baek et al.,
2022; Kim et al., 2023). These works are beyond the scope
of this work, as they require access to multiple models and
ID data, which is disallowed in most TTA settings (Wang
et al., 2020; Niu et al., 2022; Yuan et al., 2023).

6. Conclusion
While EM is a cornerstone in many TTA methods, the me-
chanics of its success have remained enigmatic. This study
sheds light on the transformative journey of input data em-
beddings under the EM adaption. It reveals a biphasic clus-
tering process, where alignment with the training data’s
embedding clusters bolsters accuracy, followed by a subse-
quent phase where excessive divergence diminishes it.

Our work goes beyond deciphering the mystery behind en-
tropy minimization; it also utilizes this knowledge to signif-
icantly refine the precision of model accuracy predictions
in TTA contexts. This dual achievement underscores the
potential of deep analytical approaches in enhancing the
efficacy and applicability of machine learning models.
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A. The Relationship between Entropy Minimization and Clustering
In this section, we explain the connection between entropy minimization and the Expectation-Maximization algorithm
(Dempster et al., 1977) with a mixture of Gaussians and show how the iterative entropy minimization objective leads to a
clustering process similar to the Expectation-Maximization algorithm.

In the Expectation-Maximization algorithm for clustering, the latent variables represent the cluster assignments, and the
algorithm alternates between estimating the cluster assignments (E-step) and updating the cluster parameters (M-step). The
convergence of the EM algorithm in this setting has been formally established (Dempster et al., 1977).

Poland & Shachter (1993) showed that for a random variable X with a given distribution and the mixture of random variables
Y that derive from it, the objective of minimizing the “relative entropy” between X and Y generalizes the objective of the
Expectation Maximization algorithm: to maximize the likelihood of the observations x drawn from Y ’s distribution.

In our setting, the iterative entropy minimization process corresponds to the Expectation Maximization algorithm, as iterative
entropy minimization can also be seen as a form of “self-training” with minimization of the relative entropy (the DKL
(Kullback & Leibler, 1951)) of the pseudo-labels (the model’s predictions) (Grandvalet & Bengio, 2004). The forward pass
of our training process serves two purposes: (1) it sets the “observations”, which are the model’s predictions, and (2) it
acts as the E-step of the algorithm, estimating the distribution given the model parameters (the clustering assignment). The
backpropagation step, which updates the model parameters (the cluster parameters), serves as the M-step and maximizes the
likelihood under the current pseudo-label estimates (Amini & Gallinari, 2002). It is important to note that in our setting, the
entropy minimization procedure involves changing both X and Y in each iteration, which may be different from the original
Expectation Maximization algorithm.

Using these insights, we can provide a better explanation for the two-phase clustering phenomenon observed in our
experiments. In the initial “success” phase, where the change in the embeddings is relatively small during the process, the
entropy minimization effectively performs Expectation Maximization unsupervised clustering in the model’s embedding
space, guided by the smart initialization provided by the pre-trained model. The E-step estimates the pseudo-labels based on
the current embedding structure, while the M-step updates the model to refine the embeddings and increase intra-cluster
similarity. This process leads to the formation of well-separated clusters, as reflected by the increasing Silhouette score.

However, as the Expectation Maximization algorithm continues over many iterations in the “failure” phase or if there is bad
initialization, it starts to overfit the model to the specific characteristics of the ”new” test data. Unlike the regular Expectation
Maximization algorithm, in our case, the data distribution (the observations) changes over time, which leads to a drift in the
embeddings away from the initialized representations learned from the training data. This overfitting effect, which might
even converge to a global minimum, is captured by the increasing Shift distance between the test data embeddings and the
training class embeddings.

To support this explanation, we also provide visualizations of the prediction space to illustrate the clustering process and the
eventual drift from the training embeddings. We used a mixture of Gaussians, and trained a GMM with the Expectation
Maximization algorithm using maximum likelihood, where the means are initialized based on random samples. The
covariance is used as the identity matrix, with the input samples being trainable and optimizing their location. In Figure 8,
each dot represents a sample colored by its original class, where the Xs are the centroids at each iteration. As we can see,
with the “smart initialization” of the cluster centers, the points converge to the “right” clusters based on the original cluster
centers. However, when we start the cluster centers with some shift, namely there is “wrong” initialization, the clusters start
with good clustering but then converge to wrong solutions where they mix points with different classes.
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Figure 8. Top: With the “smart initialization” of the cluster centers, the points converge to the “right” clusters based on the original cluster
centers. Middle: When we start the cluster centers with some shift, namely there is “wrong” initialization, the clusters start with good
clustering but then converge to wrong solutions where they mix points with different classes. Bottom: For reference, we also show the
regular Expectation Maximization algorithm on the shifted dataset. The X’s represent cluster centroids at each iteration.
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B. Different Parameterizations of f
In this section, we test the different ways of parameterizing the weighted-flips-to-accuracy function, f . Firstly, we look at
the effects of not weighing each flip, and then we look at linear and cubic interpolations between flips and accuracy (as
opposed to quadratic interpolation, used in the rest of the paper). Our results in Table 3 show that the optimal f is a weighted
and interpolated quadratically, with the other variations not far behind. Importantly, all variations of f perform better than
the second best performing method, COT (Lu et al., 2023).

Table 3. Mean Absolute Error between estimated accuracy, and true accuracy on a ResNet-50 model, for weighted and unweighted
flips-to-accuracy functions, that are either linear, quadratic, or cubic interpolations of points.

Datasets
Unweighted

Linear
Unweighted
Quadratic

Weighted
Linear

Weighted
Quadratic

Weighted
Cubic

Noises
IN-C {75} (Hendrycks & Dietterich, 2019) 4.95 5.04 5.94 4.79 5.23

IN-C {50} (Mintun et al., 2021) 7.19 7.36 7.94 7.35 7.01
IN-3DCC {60} (Kar et al., 2022) 4.10 4.12 4.33 3.66 4.25

CCC {27} (Press et al., 2023) 2.97 3.22 4.8 2.80 4.34
Domain Shifts

Stylized (Geirhos et al., 2019) 7.12 7.12 7.12 3.81 7.12
IN-V2 {3} (Recht et al., 2019) 3.55 3.71 5.42 4.70 4.03
IN-Sketch (Wang et al., 2019) 1.11 1.32 2.64 4.23 0.23
IN-R (Hendrycks et al., 2021a) 1.43 1.67 3.01 1.88 0.52

IN-D (Rusak et al., 2022a)
Real 3.39 3.16 2.04 3.18 4.70

Painting 2.07 1.94 0.34 2.20 0.85
Clipart 2.78 3.08 5.12 3.37 2.44
Sketch 6.12 6.95 12.89 5.44 12.38

Infograph 7.28 8.76 10.35 3.63 10.35
Quickdraw 0.79 0.79 0.79 2.57 0.79

Cartoon & Drawing {2} (Salvador & Oberman, 2022) 13.60 13.76 14.34 13.25 12.96
Adversarial Noises

BG Challenge {8} (Xiao et al., 2020) 7.19 7.36 7.33 6.92 8.50
IN-A (Hendrycks et al., 2021b) 23.70 23.53 20.39 21.61 22.91

IN-C Patch {75} (Gu et al., 2022) 1.95 2.00 2.42 1.60 1.48
IN-Hard (Taesiri et al., 2023) 5.27 4.92 0.72 3.64 3.49

Patch-IN {10} (Pintor et al., 2023) 7.42 7.55 9.02 8.87 7.98
IN-Obfuscations {3} (Stimberg et al., 2023) 0.20 0.10 0.10 4.58 0.10

OOD/Other
ObjectNet (Barbu et al., 2019) 6.81 6.81 6.81 2.74 6.81

NINCO (Bitterwolf et al., 2023) 20.20 19.85 14.98 18.07 17.73

Average 6.14 6.27 6.47 5.75 6.36
Worst Case 23.70 23.53 20.39 21.61 22.91

Average (Worst Case Excluded) 5.34 5.48 5.84 5.03 5.60
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C. WF with Limited Data
To further test WF’s ability in a challenging setting, we look at how it performs under memory and data constraints. To
this end, we test WF in the following scenarios: (1) WF is only allowed to store 100 samples for calculating flips, and
(2) when whole dataset is limited to 100 samples for flip calculation and 1,000 samples for adaptation). We note that
previous work assumes the existence of at least 2,000 test samples (Niu et al., 2022). In both cases, we use the original
weighted-flips-to-accuracy function, f , by multiplying the the weighted flips calculated on 100 samples by 10, and plugging
the output into f . Even with only using 100 samples, WF is able to best the original implementation by a bit. Surprisingly,
even with limited data and memory, WF manages to remain competitive with unconstrained methods, and is significantly
ahead of COT, when it is constrained in a similar manner.

Table 4. WF is effective in memory constrained settings. Without finetuning or refitting f , WF beats the original implementation, when
only using 100 samples to calculate weighted flips (WF limited mem). In the limited memory/data setting, WF gets access to only
1000 samples in total, 100 of which are used for flip calculations. In this setting, COT gets access to 1,000 input samples and 1,000 in
distribution samples. Best results are in bold; second best are underlined, {.} indicates how many splits are in each dataset, when there
are more than 1.

Datasets
COT

original
WF

original
WF

limited mem

COT
limited

mem/data

WF
limited

mem/data
Noises

IN-C {75} (Hendrycks & Dietterich, 2019) 2.23 4.79 7.52 36.67 6.52
IN-C {50} (Mintun et al., 2021) 3.17 7.35 8.34 40.55 4.60
IN-3DCC {60} (Kar et al., 2022) 3.02 3.66 3.97 34.44 4.31

CCC {27} (Press et al., 2023) 2.04 2.80 3.71 26.67 4.92
Domain Shifts

Stylized (Geirhos et al., 2019) 12.18 3.81 3.37 38.84 2.50
IN-V2 {3} (Recht et al., 2019) 2.68 4.70 4.00 43.96 3.80
IN-Sketch (Wang et al., 2019) 4.23 1.71 1.68 12.46 3.39
IN-R (Hendrycks et al., 2021a) 2.44 1.88 3.03 14.99 12.03

IN-D (Rusak et al., 2022a)
Real 27.54 3.18 1.73 41.52 6.51

Painting 7.49 2.12 0.71 26.21 18.44
Clipart 4.52 3.37 5.91 15.98 8.10
Sketch 0.71 5.44 6.30 12.65 4.50

Infograph 3.44 3.63 1.24 4.57 2.51
Quickdraw 1.60 2.57 2.80 0.06 2.46

Cartoon & Drawing {2} (Salvador & Oberman, 2022) 1.62 13.25 16.48 33.25 13.44
Adversarial Noises

BG Challenge {8} (Xiao et al., 2020) 19.68 6.92 5.84 32.84 10.15
IN-A (Hendrycks et al., 2021b) 30.38 21.61 16.75 15.30 29.15

IN-C Patch {75} (Gu et al., 2022) 2.57 1.60 1.98 47.03 1.92
IN-Hard (Taesiri et al., 2023) 15.33 3.64 0.65 5.83 14.73

Patch-IN {10} (Pintor et al., 2023) 10.13 8.87 9.09 49.68 9.81
IN-Obfuscations {3} (Stimberg et al., 2023) 0.12 4.58 4.67 0.09 8.93

OOD/Other
ObjectNet (Barbu et al., 2019) 10.40 2.74 0.29 2.44 2.74

NINCO (Bitterwolf et al., 2023) 20.28 18.07 20.24 13.05 35.68

Average 8.17 5.75 5.67 23.87 9.40
Worst Case 30.38 21.61 20.24 49.68 35.68

Average (Worst Case Excluded) 7.16 5.03 5.00 22.70 8.21
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D. Weighted Flips Ablations
D.1. Stopping Iteration Ablations

WF measures the amount of weighted flips from iteration 0 to iteration 1,000. This is done because RDumb resets the
model to its pretrained state every 1,000 iterations, in order to avoid collapse (Press et al., 2023). Here, we look at how
measuring weighted flips before iteration 1,000 affects the performance of WF. Interestingly, using 500 iterations increases
performance by a relative 26.89% as opposed to the 1,000 iterations used in the rest of the paper.

Stopping Iteration
Datasets 1000 500 250 100 50

IN-C 4.79 4.88 4.99 5.48 5.67
IN-C 7.35 7.48 7.84 8.96 10.10

IN-3DCC 3.66 3.32 3.37 3.00 3.06
IN-V2 4.70 4.59 4.93 5.11 5.49

IN-D
Real 3.18 0.36 0.96 2.82 5.01

Painting 2.12 1.21 4.02 11.28 14.83
Clipart 3.37 0.31 3.75 9.30 14.85
Sketch 5.44 2.49 0.33 5.61 9.26

Infograph 3.63 3.46 0.09 4.37 7.53
Quickdraw 2.57 1.73 7.55 17.54 25.35

Average 4.08 2.98 3.78 7.35 10.12

Left: Mean Absolute Error between estimated accuracy and true accuracy, when measuring weighted flips between iteration
0 and various stopping iterations. Right: For different stopping iterations, interpolating between the points in the holdout
set yields different weighted-flips-to-accuracy functions.

D.2. Holdout Set Size Ablations

Holdout Set Size
Datasets 1000 500 250 100 50

IN-C 4.79 4.77 5.52 6.07 7.62
IN-C 7.35 5.91 6.74 7.06 8.40

IN-3DCC 3.66 5.10 4.34 5.17 5.22
IN-V2 4.70 5.13 5.48 3.47 9.10

IN-D
Real 3.18 3.50 1.78 0.57 4.21

Painting 2.12 5.38 1.92 6.93 8.57
Clipart 3.37 6.69 7.96 8.79 7.70
Sketch 5.44 10.23 7.39 4.87 4.10

Infograph 3.63 6.15 0.88 3.05 3.77
Quickdraw 2.57 0.71 9.87 38.86 31.66

Average 4.08 5.36 5.19 8.48 9.04

Left: Mean Absolute Error between estimated accuracy and true accuracy, when measuring weighted flips on sets of images
of different sizes. Right: For different holdout set sizes, interpolating between the points in the holdout set yields different
weighted-flips-to-accuracy functions. f can only output values that are between 0 and 100.
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E. WF with other TTA Methods
WF esimates the accuracy of a dataset as RDumb (Press et al., 2023) is used to adapt to it. In this section, we show that WF
work with a variety of different EM methods. To further showcase the versatility of WF, we do not finetune any method, and
use the original weighted-flips-to-accuracy function f , for all experiments in Table 5.

Table 5. Mean Absolute Error between estimated accuracy and true accuracy, when adapting to data using a ResNet-50 backbone and
different TTA methods: Tent (Wang et al., 2020), RPL (Rusak et al., 2022b), and CPL (Goyal et al., 2022). In all cases, the original
weighted-flips-to-accuracy function f is used, highlighting the versatility of WF.

Datasets RDumb Tent RPL CPL
IN-C 4.79 6.75 6.85 5.14
IN-C 7.35 9.68 7.20 7.44

IN-3DCC 3.66 2.92 3.99 3.72
IN-V2 4.70 3.80 3.82 4.42

IN-D
Real 3.18 5.15 5.15 0.31

Painting 2.12 7.59 7.59 0.03
Clipart 3.37 6.98 7.11 2.57
Sketch 5.44 3.30 3.52 3.86

Infograph 3.63 2.29 2.24 3.40
Quickdraw 2.57 2.24 2.24 2.37

Average 4.08 5.07 4.97 3.33

F. Additional Vision Transformer Experiments
To further analyze WF and the second best method, COT, we add additionally analysis using a ViT-B/16 model. The task is to
estimate the accuracy of a ViT-B/16 on a variety of datasets. We compare between using the original weighted-flips-accuracy
function, f , which was interpolated using data from a ResNet-50, and interpolating the function using ViT-B/16 data points.
In both cases, the datasets used to interpolate are the same. Additionally, we compare to COT on this task.

Table 6. Mean Absolute Error between estimated accuracy and true accuracy, when estimating the accuracy of a ViT-B/16 on different
datasets.

Datasets WF WF (new f ) COT
IN-C 8.34 1.64 22.24
IN-C 6.59 1.48 25.37

IN-3DCC 7.19 1.87 18.43
IN-V2 4.44 3.63 21.29

IN-D
Real 1.02 7.27 37.21

Painting 3.02 7.06 19.13
Clipart 12.82 0.25 13.58
Sketch 11.04 1.90 5.74

Infograph 9.27 3.34 1.16
Quickdraw 2.36 13.04 0.28

Average 6.61 4.15 16.44
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G. Omitting Samples by Top-k Accuracy/Entropy Level
In addition to removing samples by Top-k accuracy, we also analyze the effects of removing samples according to their
initial entropy level. We find that both experiments exhibit similar behaviour: it is possible to remove many Top-k/low
entropy samples, without significantly affecting the accuracy gain of Tent (on a holdout set of Gaussian Noise 3).

Figure 9. Left: Average entropy across top-k samples for different values of k. The percentages shown are the fraction of images out of
the whole dataset. The original dataset, Gaussian Noise 3, has an average entropy of 2.84. Right: The relative size of the datasets, when
top-k samples are removed.

Figure 10. Left: Accuracy gain per iteration on a holdout set, as Tent adapts to its inputs. Each line corresponds to a different experiment
where we remove samples based on their initial entropy level. Similarly to Figure 2, it’s possible to remove low entropy samples while
barely hurting performance. When entropy ≤ 0, no images are excluded. Right: The relative size of the datasets and their average
entropy, when samples with a entropy level ≤ k are removed.
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H. Silhouette score, Shift distance, and Accuracy Throughout Entropy Minimization
In Figure 4, we looked at the changes of Silhouette scores/Shift distances for each phase in EM. Here, we show how these
scores, along with accuracy, change in every iteration of Tent. For each one of the datasets analyzed, we group noises based
on severity level, and plot their averages and standard deviations, for every iteration.

Figure 11. Changes in Silhouette scores, Shift distances, and Accuracies as Tent adapts to its inputs. We group together noises by severity
level, and average the data for every iteration.
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I. WF on CIFAR10/100
WF is not as effecitve on CIFAR10 (Krizhevsky et al., 2009) as it is on ImageNet (Deng et al., 2009) scale datasets. CIFAR10
is an outlier in entropy minimization: for example, Press et al. (2023) showed that Tent doesn’t degrade in accuracy, even
after 100 million CIFAR10 images seen. We nonetheless run our method on CIFAR10. On average, we see only 0-5 label
flips per dataset on C10-C. This is far from what we see ImageNet-scale datasets we tested.

Like in the paper, we interpolate a weighted-flips-to-accuracy function f on the holdout set and get:

f(x) = −249.36x2 − 87.39x+ 77.01

which has a MAE of 16.64 on the C10 validation set.

We repeat this for CIFAR100 and get:

f(x) = 0.000322x2 − 0.287x+ 99.54

which has a MAE of 9.10 on the C100 validation set.

Apart from refitting f , we did not tune any other parameter in these two experiments.

J. RDumb
WF uses RDumb (Press et al., 2023) to estimate accuracy. We go over the implementation of the method in brief. RDumb is
based on ETA (Niu et al., 2022), wherein the model is reset to its pretrained state every 1,000 iterations. Rdumb optimizes
the BatchNorm (Ioffe & Szegedy, 2015) parameters, Θ of a given classifier f .

The loss optimized is entropy, with two filtration steps: the first, in which samples with high entropy are filtered out, and the
second, in which samples that produce logits similar to previous samples are filtered out.

For a sample x, the first filtration is given by:

Sent(x) =
1

exp[E(x; Θ)− E0]
· IE(x;Θ)<E0

(x),

with E0 = 0.4× ln103.

The second filtration is given by:

Sdiv(x) = I{cos(fo(x),m−1)<ϵ}(x)

where cos() is the cosine similarity, and mt is an exponential moving average of the logits of previously seen samples at
iteration t:

mt =

{
y1, if t = 1

αyt + (1− α)mt−1, if t > 1

and yt is the average model prediction on a batch of inputs at step t, and α = 0.9.

Put together with entropy minimization, the optimization formula becomes:

min
Θ̂

−Sent(x) · Sdiv(x)
∑
y∈C

fΘ(y|x) log fΘ(y|x)

RDumb uses a SGD with a learning rate of 2.5 × 10−4, and a batch size of 64, and is reset to its pre-trained state every
1,000 iterations.
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K. Software Licenses
• ImageNet-C (Hendrycks & Dietterich, 2019)Apache License 2.0
https://github.com/hendrycks/robustness

• ImageNet-R (Hendrycks et al., 2021a) MIT License
https://github.com/hendrycks/imagenet-r

• ImageNet-3D-CC (Kar et al., 2022): CC-BY-NC 4.0 License
https://github.com/EPFL-VILAB/3DCommonCorruptions

• ImageNet-C (Mintun et al., 2021): MIT License
https://github.com/facebookresearch/augmentation-corruption

• ImageNet-V2 (Recht et al., 2019): MIT License
https://github.com/modestyachts/ImageNetV2

• Backgrounds Challenge (Xiao et al., 2020):
https://github.com/MadryLab/backgrounds_challenge

• CCC (Press et al., 2023): MIT License
https://github.com/oripress/CCC

• Stylized ImageNet (Geirhos et al., 2019): MIT License
https://github.com/rgeirhos/Stylized-ImageNet

• NINCO (Bitterwolf et al., 2023): MIT License https://github.com/j-cb/NINCO

• ImageNet-D (Rusak et al., 2022a): Apache License 2.0
https://github.com/bethgelab/robustness

• ObjectNet (Barbu et al., 2019): MIT License https://objectnet.dev/

• Shift Happens Benchmark: Apache License 2.0 https://github.com/shift-happens-benchmark/
icml-2022
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